Warmup 9/Smallest number whose digits add up to 10 1) Find the slope of each line:

Textbook pg. 228-229 (13-16) Find and interpret the slope for each real-world situation. 13. 80 (8, 170) 160 140 120 100 earned (\$) $m = \frac{170 - 110}{8 - 4} = \frac{60}{4} = 15$ 110 The slope is 15. The money earned increases Money e 80 60 40 by \$15 for each hour worked. 20 2 3 4 5 6 7 8 Time worked (hr) 1

How do I get the slope?

•Between points (3, 2) and (5, 10)

Finding slope for a linear function WITHOUT a graph

- You can get the <u>change in y</u> by subtracting the ycoordinates.
- You can get the <u>change in x</u> by subtracting the xcoordinates.

$$Slope = \frac{y_2 - y_1}{x_2 - x_1}$$

The 2's and 1's are not exponents. They are just LABELS.

 $y_2 - y_1$ just means "the 2nd y minus the 1st y"

DO NOT PUT THE X'S ON TOP.

Find the slope:

1. Between (1, 4) and (3, 9)

$$m = \frac{9-4}{3-1} = \frac{5}{2}$$

2. Between (-3, -4) and (7, 1)

3.

$$m = \frac{1 - (-4)}{7 - (-3)} = \frac{5}{10} = \frac{1}{2}$$

Between (-6, 2) and (-4, -10)

$$m = \frac{-10-2}{-4-(-6)} = \frac{-12}{2} = -6$$

Would you get different answers?

Try using each formula to get the slope between (5, 9) and (7, 3). Which ones can work?

$$\frac{y_2 - y_1}{x_2 - x_1} \quad \frac{y_1 - y_2}{x_1 - x_2}$$
$$\frac{y_2 - y_1}{x_1 - x_2} \quad \frac{x_2 - x_1}{y_2 - y_1}$$

Find the slope between...

- 1. (10, -7) and (13, 2)
- 1. (-4, 10) and (1,6)

 Find the slope between...
 Find the slope between...

 1. (-4, 4) and (2, 7)
 1. (2, -3) and (42, -3)

 1. (2, 0) and (-4, 8)
 1. (6, 11) and (6, 8)

Guess the Rule			
X	у	What is the value of y	
-2	-5	when x is zero?	
-1	-2	How much does y increase when x increases by 1?	
0	1		
1	4		
2	7	y = 3x + 1	

•Graph:
$$y = -3x - 2$$

What would the graph of y = 4 look like? Convince me.