Warmup $10 /\left(\frac{\sin x}{\sin x}+\frac{2 \pi^{2}}{2 \pi^{2}}+\frac{\cos x}{\cos x}+\frac{\tan x}{\tan x}+13-\right.$

Created by Max Robinson (student from last year)

\square Bill had 50 cookies in a tub. He gave two cookies to each classmate.

Write an equation to represent how many cookies Bill has left.
2. The inputs (x) would represent \qquad
3. The outputs (y) would represent \qquad
The slope is ___ and it represents \qquad
5. The y-intercept is \qquad and it represents

The table from the cookies situation is shown to the right. Suppose you had to

x	y
0	50
1	48
2	46
3	44
4	42
5	40

Go over HW, collect Warmups

Write an equation, make a table, and draw a graph.

Example

\square A tree was planted when it was 5 feet tall. Each year, it grew 3.5 more feet.
$y=3.5 x+5$
\square INPUTS (x): \# of years
\square OUTPUTS (\mathbf{y}): height of tree
\square SLOPE: Growth in feet per year
\square Y-INTERCEPT: original height

x (years)	y (height)
0	5
1	8.5
2	12
3	15.5
4	19
5	22.5

REMEMBER:

IN A REAL-WORLD SITUATION

\square Slope $=$ Rate of change
\square Y-intercept $=$ original amount

Write an equation, make a table, and draw a graph.
\square Each month, Bob's phone plan charges a \$10 flat fee, plus $\$ 0.05$ per text message sent.
$\square=0.05 x+10$
\square INPUTS: \# of texts
\square OUTPUTS: total cost
\square SLOPE: cost per text
\square Y-INTERCEPT: flat fee (cost for 0 texts)

MINI-LESSON:

To Connect or Not To Connect?

Refresher: WHY do we connect the points for a normal function?

To connect or not to connect?

\square You must pay $\$ 10$ per t-shirt plus a flat shipping fee of \$6.
$\square y=10 x+6$

x (\# of shirts)	y (fotal cost)
1	16
2	26
3	36
4	46
5	56

To connect or not to connect?

\square The temperature is 6 degrees and it is rising 10 degrees per hour. 70

TO CONNECT OR NOT TO CONNECT???

\square For a normal equation, you should always connect the points, because " x " could be any number.
\square For a story problem, you don't always connect the points, because the decimals don't always make sense for "x".
\square Ask yourself one question: DO THE NUMBERS IN BETWEEN MAKE SENSE???

- If yes, connect. (Continuous graph)
\square If no, do not connect. (Discrete graph)

Should we have connected these?

Example

\square A tree was planted when it was 5 feet tall. Each year, it grew 3.5 more feet.
$\square=3.5 x+5$
Yes, you can have fractions of a year

x (years)	y (height)
0	5
1	8.5
2	12
3	15.5
4	19
5	22.5

Should we have connected these?

\square Bill had 50 cookies in a tub. He gave two cookies to each classmate.

x (classmates)	y (cookies lefi)
0	50
1	48
2	46
3	44
4	42
5	40

a classmate. The graph doesn't
continuously go from 50 to 48; it
happens instantaneously***

Should we have connected these?

\square Each month, Bob's phone plan charges a $\$ 10$ flat fee, plus $\$ 0.05$ per text message sent.
$\square y=0.05 x+10$
***No, you can not have fractions of

x	y
0	10
1	10.05
2	10.10
3	10.15
4	10.20
5	10.25

a text. The cost does not go up
$\begin{array}{ll}5 & 10.25\end{array}$ gradually from $\$ 10.00$ to $\$ 10.05$, it
goes up instantaneously***

FINAL NOTE about connecting points

\square Sometimes, in your textbook, or in another problem, you might see the points connected, even if it technically wouldn't make sense.
\square They do this because connecting the dots can help you see the overall trend better.

HOMEWORK: Linear Situations

Worksheet
\square When creating the graphs, DO NOT just use the numbers in your table as your scale. You should scale it by something "common", like 5 s , or 10 s , or 20s.
\square Your x and y-axis do NOT need to use the same scale.

