

Proportional, Linear but not Proportional, or Nonlinear?

Retake tomorrow?

- Must tell me TODAY. (And meet with me today)

Activity: Slope triangles

- Draw FIVE different slope triangles on this line.
- The triangles should be different sizes.
- When you draw them, use arrows to show the direction you are moving.
Use each triangle to find the slope of the line, then compare all five answers.
- Did you get the same answer for the slope each time? On your paper, write a convincing explanation for why this makes sense.

Find the slope of each line...

How do I get the slope?

- Between points $(3,2)$ and $(5,10)$

Finding slope for a linear function

 WITHOUT a graph- You can get the change in y by subtracting the y coordinates.
- You can get the change in x by subtracting the x coordinates.

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The 2's and 1's are not exponents. They are just LABELS.
$y_{2}-y_{1}$ just means "the $2^{\text {nd }} y$ minus the $1^{\text {st }} y$ "

Find the slope:

1. Between $(1,4)$ and $(3,9)$

$$
m=\frac{9-4}{3-1}=\frac{5}{2}
$$

2. Between $(-3,-4)$ and $(7,1)$

$$
m=\frac{1-(-4)}{7-(-3)}=\frac{5}{10}=\frac{1}{2}
$$

3. Between $(-6,2)$ and $(-4,-10)$

$$
m=\frac{-10-2}{-4-(-6)}=\frac{-12}{2}=-6
$$

Would you get different answers?
What if I switched the order of the x's and the y's? Would it still work?
$(5,9)$ and $(7,3)$.

Find the slope 2 different ways

Find the slope between...

1. $(10,-7)$ and $(13,2)$
2. $(-4,10)$ and $(1,6)$

Find the slope between...

1. $(2,-3)$ and $(42,-3)$
2. $(6,11)$ and $(6,8)$

Slope?

\mathbf{x}	0	1	2	3	4
\mathbf{y}	-6	-4	-2	0	2

x	0	3	6	9	12
y	27	21	15	9	3

Homework

p. $185(1-8,10-12)$

