Created by Yousef Shakhtour

Warmup 9/(Oscar's age) – (Big Bird's age, + Zoe's age + Elmo's age + Grover's age + Snufflupagus' age)

Throwback Thursday

Simplify the following by cross canceling:

$$1.\frac{1}{2} \cdot \frac{20}{50} = \frac{10}{10} = 1$$

$$2.\frac{1}{4} \cdot \frac{256}{8} = \frac{64}{3}$$

3.
$$\frac{14}{9} \div \frac{21}{81} =$$

$$2 \cancel{\cancel{4}} \cancel{\cancel{\cancel{4}}} \cancel{\cancel{\cancel{4}}} = \frac{18}{3} \div \cancel{\cancel{6}}$$

$$4. \quad \frac{10}{15} \div \frac{90}{25} \cdot \frac{9}{5} = \frac{1}{3}$$

NEW UNIT!

• In the last unit, we learned about ALL DIFFERENT types of functions...

• Functions with an x² term make parabolas...

• Functions with absolute value make a "v" shape...

• Functions with a square root make this shape...

• Functions with a variable as an exponent make this shape...

• Functions with "sin" and "cos" make wavy graphs...

• ...and functions with the form

x + make straight lines!

In this unit...

• We are going to now focus exclusively on **linear** graphs. These are probably the most common, and useful, type of function.

Anything that has a <u>constant rate</u> is linear!

Add to your table of contents...

Table of Contents

Simplifying & Interpreting Expressions	p.1
Solving Equations	p.2
Fractions & Story Problems	p.3
Equations with No Solution or Infinite Solutions	p.4
Inequalities	p.5
Compound Inequalities	p.6
Solving for a Variable	p.7
What is a Function?	p. 8
Continuous or Discrete	p. 9
Domain & Range	p. 10
Slope	p. 11

Slope

Objectives:

-Be able to find the slope of a line on a graph! -

Which roof is steeper???

Which roof is steeper?

Which roof is steeper?

Increases 2 numbers for every 1

Increases 1.5 numbers for every 1

• SLOPE describes how steep a line is. It tells you how much the graph increases for each x. • Bigger slope number = steeper line! • A straight line will NEVER CHANGE SLOPE!!!

Linear Functions

- have a constant rate of change (the rate of change is the same on every interval)
 - This constant rate of change is called slope

How to find Slope from a Graph:

Pick two points, then find the:

$$\begin{array}{c} \textbf{change in y} \\ \hline \textbf{change in x} \end{array}$$

• (Also known as $\frac{rise}{run}$)

Which line is steeper?

How steep is this line?

How steep is this line?

Which line is steeper?

How steep is this line?

How steep is each line?

Find the slope...

Find the slope of each line...

Find the slope of each line...

Positive

Negative

Zero

Undefined

• Find the slope of each line.

Which one of these lines could it be?

$$Slope = -\frac{1}{4}$$

Homework

Worksheet