Warmup 10/ (The product of the $2^{\text {nd }} \&$

 $4^{\text {th }}$ prime numbers) Created by Mr. LischweWhich one doesn't belong? Explain why.
 Repeat for all four shapes.

Go over homework

What does it mean when we graph?

- So far, we have solved \& graphed inequalities with one variable, like the one in the warmup...

- DISCUSS:
- 1. What does this graph represent?
- 2. What do you think the graph of a two variable inequality would look like???
Simplifying \& Interpreting Expressions p. 1
Solving Equations p. 2
Fractions \& Story Problems p. 3
Equations with No Solution or Infinite Solutions p. 4
Inequalities p. 5
Compound Inequalities p. 6
Solving for a Variable p. 7
What is a Function? p. 8
Continuous or Discrete p. 9
Domain \& Range p. 10
Slope p. 11
Slope WITHOUT a graph p. 12
Slope-Intercept Form p. 13
Standard Form p. 14
Point-Slope Form p. 15
Solving Linear Inequalities p. 16

An example of a two-variable inequality...

- Come up with three solutions (\mathbf{x}, \mathbf{y}) to the following inequality:

$$
y<x+5
$$

- I will mark all of your solutions on the big graph...
- What do you notice about the graph? Any connections you can make???

Another example of a twovariable inequality...

- Come up with three solutions (\mathbf{x}, \mathbf{y}) to the following inequality:

$$
y \geq 4 x+3
$$

- I will mark all of your solutions on the big graph...
- What do you notice about the graph? Any connections you can make??

Graphing Linear Inequalities

- Solve for y (get y by itself on the left side)
- Graph the "boundary line", dotted or solid
- Shade the correct side of the line

Tips
o \leq or \geq : Solid line
o < or >: Dotted line
o y < or $y \leq:$ Shade below
o y > or $y \geq$: Shade above

- HELPFUL HINT:
- Check your answer by substituting an easy point like $(0,0)$
- Graph the inequality:

$$
y \leq-\frac{1}{3} x-3
$$

- Graph the inequality:

$$
\begin{aligned}
& \frac{3 x+2 y>6}{-3 x}-\frac{3 x}{2 y} \\
& \frac{2 y}{2}>\frac{6 x}{2}-\frac{3 x}{2}
\end{aligned}
$$

$$
y>3-\frac{3}{2} x .
$$

- Graph the inequality:

$$
\frac{\begin{array}{c}
10-2 y \geq 6 x \\
-10 \\
\frac{-2 y}{-2} \geqslant \frac{6 x}{-2}-\frac{10}{-2}
\end{array}}{\frac{10}{}}
$$

$$
y \leq-3 x+5 \text { 百 }
$$

- Graph the inequality:

$$
y<7
$$

- Graph the inequality:

$$
x \geq-3
$$

Horizontal \& Vertical Lines

- $y=$ number: horizontal
o $x=$ number: vertical

Write an inequality to represent the graph.

y-intercept: 1 ; slope: $\frac{3}{4}$
Write an equation in slopeintercept form.

$$
y=m x+b \rightarrow y=\frac{3}{4} x+1
$$

The graph is shaded above a dashed boundary line.

Replace $=$ with $>$ to write the inequality $y>\frac{3}{4} x+1$.

Write an inequality to represent the graph.

y-intercept: -5 slope: $-\frac{1}{2}$
Write an equation in slopeintercept form.
$y=m x+b \rightarrow y=-\frac{1}{2} x-5$
The graph is shaded below a solid boundary line.

Replace $=$ with \leq to write the inequality $y \leq-\frac{1}{2} x-5$.

Homework Back of Worksheet

