Warmup 10/ (The product of the 2nd & 4th prime numbers) Created by Mr. Lischwe

Which one doesn't belong? Explain why. Repeat for all four shapes.

Go over homework

What does it mean when we graph?

 So far, we have solved & graphed inequalities with one variable, like the one in the warmup...

o DISCUSS:

- 1. What does this graph represent?
- 2. What do you think the graph of a two variable inequality would look like???

Simplifying & Interpreting Expressions	p.1
Solving Equations	p.2
Fractions & Story Problems	p.3
Equations with No Solution or Infinite Solutions	p.4
Inequalities	p.5
Compound Inequalities	p.6
Solving for a Variable	p.7
What is a Function?	p. 8
Continuous or Discrete	p. 9
Domain & Range	p. 10
Slope	p. 11
Slope Slope WITHOUT a graph	p. 11 p. 12
•	•
Slope WITHOUT a graph	p. 12
Slope WITHOUT a graph Slope-Intercept Form	p. 12 p. 13

An example of a two-variable inequality...

 Come up with three solutions (x, y) to the following inequality:

$$y < x + 5$$

- I will mark all of your solutions on the big graph...
- What do you notice about the graph? Any connections you can make???

Another example of a two-variable inequality...

 Come up with three solutions (x, y) to the following inequality:

$$y \ge 4x + 3$$

- I will mark all of your solutions on the big graph...
- What do you notice about the graph? Any connections you can make???

Graphing Linear Inequalities

- Solve for y (get y by itself on the left side)
- Graph the "boundary line", dotted or solid
- Shade the correct side of the line

Tips

- o ≤ or ≥: Solid line
- o < or >: Dotted line
- o y < or y ≤: Shade below
- o $y > or y \ge$: Shade above

• HELPFUL HINT:

 Check your answer by substituting an easy point like (0, 0)

• Graph the inequality:

$$y \le -\frac{1}{3}x - 3$$

• Graph the inequality:

• Graph the inequality:

o Graph the inequality:

y < 7

o Graph the inequality:

$$x \ge -3$$

Horizontal & Vertical Lines

o y = number: horizontal

o x = number: vertical

Write an inequality to represent the graph.

y-intercept: 1; slope:
$$\frac{3}{4}$$

Write an equation in slopeintercept form.

$$y = mx + b \rightarrow y = \frac{3}{4}x + 1$$

The graph is shaded above a dashed boundary line.

Replace = with > to write the inequality $y > \frac{3}{4}x + 1$.

Write an inequality to represent the graph.

y-intercept: -5 slope:
$$-\frac{1}{2}$$

Write an equation in slopeintercept form.

$$y = mx + b \rightarrow y = -\frac{1}{2}x - 5$$

The graph is shaded below a solid boundary line.

Replace = with \leq to write the inequality $y \leq -\frac{1}{2}x - 5$.

Homework

Back of Worksheet