Warmup $11/2^{2^2}$ 1. Find two points that would be on the graph of the equation 5x + 2y = 60. 2. Early finishers: find as many MORE points as you can. (12, 0) (6, 15) (14, -5) (4, 20) (0, 30) (10, 5) (2, 25) (8, 10) (1, 27.5) (20, -20) (9, 7.5)

Another way to solve systems...

· Look at #2 on your homework.

$\begin{cases} y = 2x - 8\\ y = -3x + 7 \end{cases}$	Since y = both, you can set them equal to each other
2x - 8 = -3x + 7	
Then solve	

x = 3 (Does this match your original answer?)
How can we get y?

	Table of Contents
p. 1	Consecutive Sums Project
p. 2	Stacking Cups Problem
p. 3	Converting Fractione and Decimals (1.1)
p. 4	Realization Science (1.1)
p. 5	What is a Function?
p. 6	Function National (1.1)
p. 7	What is a Function?
p. 8	Analyzing Key Features of Graphs
p. 9	Proportional Relationships (4.1)
p. 10	Stope (1.2)
p. 11	Stope (1.2)
p. 13	Stope Intercept Form (1.4)
p. 14	Stope Intercept Form (1.4)
p. 15	Stoping 2-step Equations (2.2)
p. 16	Equations with Variables on Both Sides (2.4)
p. 17	Equations with the Distributive Property (2.5)
p. 17	Equations with No Solution or Infinite Solutions
p. 18	Solving Systems by Substitution

WHITEBOARDS

Solve the System of Equations using
Substitution
$$x + y = 10$$
$$y = 2$$
(8, 2)

Solve the System of Equations using
Substitution
$$y = x + 100$$
$$y = 45$$
(-55, 45)

Solve the System of Equations using
Substitution

$$3x + 10y = 20$$

 $x = 6$
(6, $\frac{1}{5}$)

Solve the System of Equations using
Substitution

$$4x + y = 24$$

 $y = 2x$
 $4x + y = 24$
 $4x + y = 24$
 $4x + 2x = 24$
 $4x + 2x = 24$
 $6x = 24$
 $x = 4$
 $(4, 8)$

CHECK: Solution: (4, 8)4x + y = 244(4) + 8 = 2416 + 8 = 2424 = 24

Solve by Substitution:

$$2x - y = 15$$

 $x = 3y$
 $2x - y = 15$
 $2(3y) - y = 15$
 $6y - y = 15$
 $5y = 15$
 $y = 3$
Now find x:
 $x = 3y$
 $x = 3(3)$
 $x = 9$
 $(9, 3)$

CHECK: Solution: (9, 3) 2x - y = 152(9) - 3 = 1518 - 3 = 1515 = 15

Substitution Strategy:
 If y = (something) you can replace the y from the other equation with the (something)
• Same with x = (something)

Solve by Substitution

$$6x + 4y = 8$$

 $y = -2x$
(-4, 8)

Solve the System of Equations using Substitution

$$y = 2x - 21$$

 $y = 5x - 3$

 $\frac{\text{Solve by Substitution}}{x = 5y}$ -2x + 20y = -10(-5, -1)

$$\frac{\text{Harder?}}{y = 2x - 3}$$

3x + y = 7
(2, 1)

 $\frac{\text{Even harder?}}{x + 2y = 2}$ y = x + 4

Example 2:

$$x + 2y = 2$$

 $y = x + 4$
 $x + 2y = 2$
 $x + 2(x + 4) = 2$
 $x + 2(x + 4) = 2$
 $x + 2x + 8 = 2$
 $3x + 8 = 2$
 $3x = -6$
 $x = -2$
(-2, 2)

$$\frac{\text{Whiteboard:}}{4x - 6y = 4}$$

$$x = 2y - 5$$
(19, 12)

 $\frac{\text{Whiteboard:}}{y = 3x + 8}$ 8x + 4y = 22 $\left(-\frac{1}{2}, 6\frac{1}{2}\right)$

 $\begin{cases} 2x - 8y = 14\\ x = 4y + 2 \end{cases}$

NO SOLUTION!

Story Problem

 Phil and Lill have 42 pacifiers all together. Phil has 8 more pacifiers than Lill. How many pacifiers do they each have?

$${}^{P+L}_{L+8} = P$$

Phil has 25 pacifiers, Lill has 17 pacifiers

