Warmup $8 /(\sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3} \cdot \sqrt{3})$

Created by Mr. Lischwe

1. How many miles is it from the earth to the moon?

238,900 miles

2. Estimate the square root of 2 to the nearest hundredth. Check your estimates until you get the closest. PLEASE SHOW ME when you think you have it!!!
$\sqrt{2} \approx 1.414($ nearest hundredth $=1.41)$
(This is a well-known value. This one and $\sqrt{3} \approx 1.732$ are the only ones I have memorized myself)

Plan for the rest of the unit
TUESDAY: Solving x^{2} and x^{3} equations
WEDNESDAY: Rational vs. Irrational
THURSDAY: Rational vs. Irrational

MONDAY: Unit 1 Review
TUESDAY: Unit 1 Test (Covers last week and this week)

Table of Contents

p. 1 Converting Fractions and Decimals (1.1)
p. 2 Roots ($1.8 \& 1.9$)
p. 3 Solving x^{2} and x^{3} Equations (1.8)

Objective:

-Solve equations of the form $\mathrm{x}^{2}=$ number and $x^{3}=$ number
-Understand when there will be one solution, two solutions, or no solution

Using roots to solve equations

The way to solve equations is to use inverse operations.

$$
\begin{aligned}
& \text { SOLVE: } x+8=12 \\
& \text { SOLVE: } x-3=27
\end{aligned}
$$

$$
\text { SOLVE: } 4 x=32
$$

Solving x^{2} and x^{3} equations

- Let's refresh our memory on some symbols...
$\sqrt{49}$ (the positive square root)
$--\sqrt{49}$
(the negative square root) $\quad-7$
$- \pm \sqrt{49}$
(both!)

$$
7,-7
$$

Solve: $x^{2}=64$

What is the inverse of "squaring"?
$\sqrt{x^{2}}=\sqrt{64}$
Would positive 8 AND negative 8 both work?
So you should do $\sqrt{x^{2}}= \pm \sqrt{64}$

$$
x=8,-8
$$

- Solve: $x^{3}=27$
- Would the positive and negative root both work?

$$
\begin{aligned}
& \sqrt[3]{x^{3}}=\sqrt[3]{27} \\
& x=3
\end{aligned}
$$

Is this possible???

Yes, could be positive OR negative

$$
(4 \text { and }-4)
$$

Is this possible???

Yes, could be positive OR negative

$$
\approx 7.1 \text { or } \approx-7.1
$$

Is this possible???

Yes, would have to be negative
(-2.something)

Is this possible???

No; nothing times itself equals a negative

Is this possible???

Yes, could be positive OR negative
≈ 1.414 or ≈-1.414

Is this possible???

Yes, only a positive would work
(2.something)

Is this possible???

No, nothing times itself can equal a negative

Is this possible???

$\square \cdot \square \cdot \square=-567$

Yes, would have to be negative
-8.something

Is this possible???

$\square \cdot \square=\mathbf{2 5 0 , 0 0 0}$

Yes, could be positive or negative

500 or -500

Solving x^{2} and x^{3} equations

1. $x^{2}=196 \quad x=14,-14$
2. $x^{3}=125$

$$
x=5
$$

3. $x^{3}=-64$
$x=-4$
4. $x^{2}=-289$
no solution
***IMPORTANT: Be sure to check the positive and the negative root! $\% * *$

What if it's not a perfect square?

Solve each equation. Write both an exact answer and an estimate rounded to the nearest tenth.
5. $x^{2}=40$

ROUNDED ANSWER: $x \approx \pm 6.3$
EXACT ANSWER: $x= \pm \sqrt{40}$

SHOWDOWN

- A pile of cards is face down on the desk.
- The "Showdown Captain" will turn over the top card.
- Everyone at the group solves the problem on a whiteboard. Don't show your work to anyone.
- Your group needs to come up with a silent signal. When you feel you have answered the problem, give the silent signal to the showdown captain.
- When the entire group is ready, the Captain says "SHOWDOWN!" and everybody shows their answers.
- If there are disagreements, please respectfully discuss/debate until you agree. Try to resolve it with your group but call the teacher over if absolutely necessary.
- Rotate Showdown Captains for the next card.

Showdown Rules: Part 2

For the " x " ${ }^{2 \text { " }}$ or " x " ${ }^{3 "}$ Problems

- $* * *$ For these, you DO need to actually put the answers!!! ***
- Write " $x=$ " for exact solutions
- Write " $x \approx$ " for rounded solutions
- If there are two solutions, write them both!
- Write "no solution" if it doesn’t work

Showdown: Part 2

- $x^{3}=-8$
- $x^{2}=-25$
- $x^{2}=49$
- $x^{2}=51$
- $x^{3}=1000$
- $x^{2}=-18$
- $x^{3}=-18$
- $x^{4}=16$
- $x^{10}=-450$
- $x^{7}=21$
- $x^{2}=0$
$\mathrm{x}=-2$
No solution
$\mathrm{x}=7,-7$
$x \approx 7.1,-7.1$
$\mathrm{x}=10$
No Solution
$x \approx-2.6$
$\mathrm{x}=2,-2$
No solution
$x \approx 1.5$
$x=0$

Positives \& negatives

$x^{2}=($ positive number $)$
$x^{2}=($ negative number $)$
$x^{3}=($ positive number $)$
$x^{3}=($ negative number $)$

Please write the correct phrase in each blank above!

Will have NO SOLUTION
 Will have ONE solution
 Will have TWO solutions

How about...

$\sqrt{x}=16$

HOMEWORK: Keep working on Patterns

 Worksheet!