Warmup 11/ (Miss Niemiec's half-birthday)

1) Estimate: $\sqrt{\mathbf{3 5}}$
x
y

2	4	6
8	14	20

3) Solve the equation:

$$
\begin{aligned}
2(4 x-5) & =9 x-10-\infty \\
8 x-10 & =8 x-10
\end{aligned}
$$

Any number wald work! Infinite

Turn in Scavenger Hunts
p. 1
p. 2
p. 3
p. 4
p. 5
p. 6
p. 7
p. 8
p. 9 Slope with a Graph
p. 10 Slope WITHOUT a graph
p. 11 Slope-Intercept Form
p. 12 Linear/Nonlinear Tables and Proportional Relationships
p. 131 and 2 Step Equations
p. 14 Equations w/ Variables on Both Sides
p. 15 Equations w/ Distributive Property
p. 16 Equations with No Solution or Infinite Solutions

Equations with No Solution or Infinite Solutions

Objective:
-Solve equations that have no solution or infinite solutions

Equations with infinite solutions

- In the equation $\mathbf{2 x}=\mathbf{x + 3}$, there is only one solution:

3 , because 3 is the only number for x that would make both sides equal.

- Try to come up with an equation in which every number could work for x.

$$
\begin{gathered}
2 x=2 x \\
x+7=x+7
\end{gathered}
$$

$$
3 x-4=3 x-2-2
$$

Equations with no solution

Can you think of an equation has no solutions? (No numbers could work for x ?)

$$
\begin{gathered}
x+1=x+2 \\
0 x=7 \\
2 x+10=2 x+3
\end{gathered}
$$

What value of x makes the equation

 true?$$
\begin{gathered}
x+5=x+10 \\
x+10=10+x \\
x+x=2 x+0 \\
2 x=3 x \\
x-10=x \\
2 x+6=2(x+3)
\end{gathered}
$$

Examples
1.

$$
\begin{gathered}
4 x+3=x+18 \\
\frac{x}{x}+3 \times-18 \\
3 x+\sqrt{3}=-3 \\
\hline 3 x=15 \\
x=5 \text { sen solution } \\
x=5
\end{gathered}
$$

2.

No Solution
No solution
3.

$$
\begin{aligned}
& \begin{array}{l}
6 x+10=2 x+10 \\
-2 x \quad-2 x \\
\hline 4 x+10=10 \\
-10=10 \\
4 x=\frac{0}{4} \\
x=0 x \text { Ennosalution }
\end{array} \\
& \begin{array}{l}
6 x+10=2 x+10 \\
-2 x \quad-2 x+ \\
4 x+18=18 \\
-10=10 \\
4 x=\frac{0}{4} \\
x=0 x \in \text { en- Solution }
\end{array} \\
& \begin{array}{l}
6 x+10=2 x+10 \\
-2 x \quad-2 x+ \\
4 x+18=18 \\
-10=10 \\
4 x=\frac{0}{4} \\
x=0 x \in \text { en- Solution }
\end{array} \\
& \begin{array}{l}
6 x+10=2 x+10 \\
-2 x \quad-2 x+ \\
4 x+18=18 \\
-10=10 \\
4 x=\frac{0}{4} \\
x=0 x \in \text { en- Solution }
\end{array} \\
& \begin{array}{l}
6 x+10=2 x+10 \\
-2 x \quad-2 x+ \\
4 x+18=18 \\
-10=10 \\
4 x=\frac{0}{4} \\
x=0 x \in \text { en- Solution }
\end{array} \\
& \text { 4. } 3(x-4)=(x-12+2 x \\
& \begin{array}{c}
3 \\
-3 x-12=3 k-12 \\
-15 x
\end{array} \\
& -12=-12
\end{aligned}
$$

Important to realize:

- ***If the variables "go away" on BOTH SIDES of the equation, it will either have no solution or infinite solutions.

What value of x makes the equation true?

$$
x+5=x+10
$$

No Solution:

- Something like: $2 x+5=2 x+6$

$$
5 \stackrel{\downarrow}{=}
$$

- Means it's an impossible equation - NO NUMBERS will work

What's the difference?

$$
\frac{\mathbf{0 x}}{0}=\underset{\underbrace{}_{0}}{\mathbf{8}} \text { vs. } \quad \underset{\text { Dou see why the one on the left }}{ }{ }^{8}=\frac{\mathbf{0}}{\mathrm{P}}
$$

is impossible, but the one on the
$X=\frac{8}{0}=$ error

$$
x=\frac{0}{8}=0
$$

Dividing by zero...

$$
\frac{0}{\text { anvthina }}=0 \quad(\text { so } x=0)
$$

$$
\frac{\text { anything }}{0}=\text { undefined }
$$

(So no solution)

What value of x makes the equation

 true?$$
\begin{gathered}
2 x+6=2(x+3) \\
x+10=10+x
\end{gathered}
$$

Infinite Solutions
If you ever have the exact same thing on both sides
" $5=5$

- $2 x-8=2 x-8$
- Etc.
- Means EVERY NUMBER will work

1 solution, zero solutions or infinite solutions?
1.

$$
\begin{aligned}
5(x-3)+10 & =2 x+3 x-5 \\
5 x-5 & =5 x-5 \text { INFINITE }
\end{aligned}
$$

2.

$$
\begin{gathered}
12=3(x+5)-3 x \\
12=3 x+15-3 x \\
12=15
\end{gathered}
$$

3.

$$
\begin{aligned}
x+3+3 x+5 & =2 x-4+12+2 x \\
4 x+8 & =4 x+8
\end{aligned}
$$

INFINITE
4.

$$
\begin{aligned}
& 2(x+3)=-2 x+6 \\
& 2 x+6=-2 x+6 \\
& +\frac{+2 x}{4 x+6}=6
\end{aligned}
$$

No SOCUTION

$$
\underset{+2 x+6}{2 x+2 x}=-2 x+\quad \rightarrow 4 x=0 \rightarrow x=0
$$

Realize the difference...

$4 x=5 x$
 VS.
 $4=5$

Left: x can equal zero Right: no solution!

COMMON MISTAKE

- What is going to happen here?

$$
5 x+9=5 x
$$

- If you get rid of the variables on BOTH SIDES, it is either going to be "No solution" or "Infinite solutions".
- Don't just leave it as " $9=0$ ". You MUST write infinite solutions or no solution.

ONCE AGAIN...

IMPORTANT
 " "7 = 8" is NOT AN ANSWER.

- You MUST write "No solution"

Homework: "Special" Equations Worksheet

