Created by Anish Krishnan
Warmup $3 /\left(e^{i \pi}+8\right)$

1. Name all of the properties of parallelograms. (Try to do it without looking) Draw a picture for each one and mark your diagram.

- Math competition announcement

Homework

- p. 1198 (16-21, 24)

17. If quadrilateral $R S T U$ is a parallelogram, then $\overline{R S} \cong \overline{S T}$.

Sometimes; opposite sides of a parallelogram are congruent, but consecutive sides, such as $\overline{R S}$ and $\overline{S T}$, may or may not be congruent.
18. If a parallelogram has a 30° angle, then it also has a 150° angle. Always; consecutive angles of a parallelogram are supplementary, so the angle that is a consecutive angle to the $\mathbf{3 0 ^ { \circ }}$ angle must measure 150°.
19. If quadrilateral $G H J K$ is a parallelogram, then $\overline{G H}$ is congruent to $\overline{J K}$.

Always; opposite sides of a parallelogram are congruent.
20. In parallelogram $A B C D, \angle A$ is acute and $\angle C$ is obtuse.

Never; opposite angles of a parallelogram are congruent; $\angle A$ and $\angle C$ are opposite angles, so they must have the same measure.
21. In parallelogram $M N P Q$, the diagonals $\overline{M P}$ and $\overline{N Q}$ meet at R with $M R=7 \mathrm{~cm}$ and $R P=5 \mathrm{~cm}$.

Never; diagonals of a parallelogram bisect each other.

- Parallelograms
- Opposite sides parallel
- Opposite sides congruent
- Opposite angles congruent
- Consecutive angles are supplementary
- Diagonals bisect each other

16. Given: $A B C D$ and $A F G H$ are parallelograms. Prove: $\angle C \cong \angle G$

Statements	Reasons
1. $A B C D$ and $A F G H$ are parallelograms.	1. Given
2. $\angle C \cong \angle A, \angle A \cong \angle G$	2. Opposite angles of a parallelogram are congruent.
3. $\angle C \cong \angle G$	3. Trans. Prop. of Cong.

24. Justify Reasoning $A B C D$ is a parallelogram. Determine whether each statement must be true. Select the correct answer for each lettered part. Explain your reasoning.
A. The perimeter of $A B C D$ is $2 A B+2 B C$.
B. $D E=\frac{1}{2} D B$
C. $\overline{B C} \cong \overline{D C}$
D. $\angle D A C \cong \angle B C A$
E. $\triangle A E D \cong \triangle C E B$
F. $\angle D A C \cong \angle B A C$

Given: $\overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{C B}$
Prove: $A B C D$ is a parallelogram.

Special Parallelograms

- Rectangle
- Has 4 right angles
- (Plus it has all the properties of a parallelogram)

- Can you think of any special parallelograms?

- Square
- Has 4 right angles AND 4 congruent sides
- (Plus it has all the properties of a parallelogram)

True statement:

-"A square is a rectangle, but a rectangle isn't a square"

- What do I mean by this???

- Rhombus (basically a diamond)
- Has 4 congruent sides
- (Plus it has all the properties of a parallelogram)

Exploration: Diagonals

- On a giant whiteboard, draw a rectangle, square, and rhombus.
- Draw in the diagonals of each shape.
- Try to come up with properties that you think are true about each one.
- Can you draw a quadrilateral with all sides congruent, but it is NOT a square???

Always, sometimes, never?

- A rectangle is a parallelogram Always
- A square is a rectangle Always
- A rectangle is a square Sometimes
- A quadrilateral is a parallelogram Sometimes
- A parallelogram is a quadrilateral Always
- A rhombus is a square Sometimes
- A rhombus is a parallelogram Always
- A rhombus is a rectangle Sometimes

Put this proof in your notes.

- FACT: The diagonals of a rectangle are congruent.

- FACT: The diagonals of a rhombus are perpendicular.

How could we prove this???

EFGH is a rhombus. Find each value.

1) $m \angle F H G$
2) $m \angle E G H$
3) $m \angle H E F$
4) perimeter
5) $J F$

RSTU is a rectangle. Find each value.

1) $T U$
2) $S V$
3) $m \angle R V U$
4) $m \angle R S U$

Homework

- Worksheet

