Warm Up

- · PLEASE GET: Calculator, Scissors, Ruler
- 1. How many sides does a polygon with an interior angle sum of 4140 degrees have?
- 2. What is the measure of the exterior angle of a regular dodecagon?

GO OVER HOMEWORK

Quiz Tomorrow

- Interior Angles
- Exterior Angles
- Isosceles and Equilateral Triangle Theorems and their Converses
- Triangle Inequalities
- · Special Segments of Triangles-
- · Median, Midsegments, Altitude

Median

pg. 1151

 A median of a triangle is a segment whose endpoints are a vertex of a triangle and the midpoint of the opposite side.

Fun Fact!

• The intersection of the three medians of a triangle is called the *centroid*. It is the balancing point of a triangle.

Drawing Medians

Activity with the Centroid

- Draw a triangle. Cut out your triangle. Try to balance it at one point.
- Draw the three medians of the triangle

- Poke a hole with your pencil through the point at which your three medians meet
- Balance your triangle at the centroid. Does it seem to be the balancing point?

Altitudes

pg. 1157

 An altitude of a triangle is a perpendicular segment from a vertex to the line containing the opposite side. Every triangle has three altitudes. An altitude can be inside, outside or on the triangle. http://www.mathopenref.com/trianglearea.html

I need a volunteer... Draw the three altitudes!

I need a volunteer... Draw the three altitudes!

Helpful Hint

The height of a triangle is the length of an altitude.

Fun Fact!

•The intersection of the three altitudes of a triangle is called the *orthocenter*.

http://www.mathopenref.com/triangleort hocenter.html

Midsegments of Triangles pg. 1165

• The **midsegment** of a triangle is a line segment that connects the midpoints of two sides of the triangle. Every triangle has three midsegments.

Draw a Triangle with a Midsegment!

Find *DE* and *BC*. How do they <u>compare?</u> What else do you notice about DE and BC?

Triangle Midsegment Theorem

pg. 1168

The segment joining the midpoints of two sides of a triangle is parallel to the third side, and its length is half the length of that side

Find the value of n.

In the figure, R and S are the midpoints of \overline{QT} and \overline{PT} .

RS is parallel to _____.

If QP = 16, then RS = _____.

If RS = 9, then QP = _____

In the figure, $\overline{DE} \parallel \overline{BC}$ and BC = 2 DE.

If AB = 8, then AD =_____.

If CE = 4, then CA = _____.

Summarize in your Notes

 What is the difference between a median, an altitude, and a midsegment?

Cool Down 2

Draw all three altitudes.

Cool Down 3

Draw a midsegment.

Homework

•Review Worksheet II