Table/Graph/Equation/Situation Problems

Directions: For each problem, one form of a linear relationship is given - either a table, a graph, an equation, or a realworld situation written out in words. Based on which representation is given, you must create the other three. So, for example, if the equation is given, you must create a table (x-values from 0 to 5 is fine), a graph (be sure to scale your x and y-axis appropriately, and think about whether or not it would make sense to connect your dots!) and think of your own real-world situation that would match the equation.

Α

Table: (need graph, equation, situation)

Number	Cost
1	\$3.50
2	\$6.50
3	\$9.50
4	\$12.50
5	\$15.50

 $Y=3\times +0.50$ Every t-shirt costs \$3, plus a 504 shipping fee.

B

Graph: (need table, equation, situation)

0	20
1	35

Each t-shirt costs \$15, plus a \$20 shipping fee.

C

Situation: (need table, graph, equation)

The temperature on Sunday was -11°F. But the temperature has risen 4.5°F each day since then.

D

Equation: (need table, graph, situation)

$$y = 50 - 2.5x$$

You have \$50, but you spend \$2.50 on each ride you go on.

Money lef+

E

Graph: (need table, equation, situation)

The temperature is 1204, but it decreases 20°F per ministe until it hitso".

F

Table: (need graph, equation, situation)

- 0
У
75
150
225
300
375

Each t-shirt costs \$75. T-shirts