Warmup 2/(\# of eggs in a baker's dozen)

********Before starting the warmup, get:
\square A graphing sheet (either type)
\square Marker \& eraser
Put the values in order from least to greatest. Show at least a little work for each value
A: $\sqrt{50}$
B. $\sqrt[3]{50}$
C. $\sqrt[4]{50}$
D. $\frac{3000}{1000}$
E. $83-79$

Turn in Angle Challenge

ON THE BACK OF YOUR GRAPHING

 SHEET:1. Draw a capital "R".
2. Draw the "R" after a "slide".
3. Draw the "R" after a "flip".
4. Draw the "R" after a "turn".
5. If you know them, write down the official mathematical vocab words for "slide", "flip" and "turn".

Next 2 Weeks: Transformations

\square Today: Intro + Translations
\square Friday: Reflections
\square Monday/Tuesday: Rotations
\square Wednesday: Transformations without a Graph
\square 3-4 days of further review, then a Quiz

Table of Contents ($\mathbf{2}^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero and Negative Exponents (1.5)
p. 3 Multiplying and Dividing Powers (1.3)
p. 4 Power to a Power (1.4)
p. 5 Scientific Notation (1.6)
p. 6 Calculating with Scientific Notation (1.7)
p. 7 Angle Basics
p. 8 Angles formed by Parallel Lines
p. 9 Angle Sums of a Triangle (Guided)
p. 10 Transformations (6.1-6.3)

Transformations

Objectives:

\square Tell the difference between a translation, reflection, and rotation
\square Perform a translation on the coordinate plane
\square Understand coordinate notation of a translation
\square Transformation - changes a geometric figure in some way
\square Preimage - The original figure
\square Image - The figure after the transformation

Prime notation is used to show a transformation.

3 common types of transformations (copy the "R"s too)
\square Translation - A "slide"
\square Reflection - A "flip"

$$
\begin{aligned}
& R-R \\
& R-g
\end{aligned}
$$

\square Rotation - A "turn"

Which transformation is it?

Reflection

Which transformation is it?

Which transformation is it?

Which transformation is it?

Reflection

Which transformation is it?

Translation

Which transformation is it?

Rotation

Which transformation is it?

Reflection

Which transformation is it?

Could be translation OR reflection

Which transformation is it?

Reflection

Which transformation is it?

2 steps: Reflection AND translation

Which transformation is it?

Could be translation, reflection, OR rotation!

Which transformation is it?

Reflection (look at the letters!)

Which transformation is it?

Rotation

Which transformation is it?

Translation

Which transformation is it?

Dilation (you won't do these much
until next year)
\square The last transformation was the only one in which the image was a different size or shape from the original figure.
\square In this section, we are going to focus ONLY on transformations that keep the figure the same size and shape.
\square These are sometimes called "rigid transformations"

On your graphing sheet...

\square Draw a Triangle with coordinates $\mathrm{T}(-5,5) \mathrm{R}(-5,7)$ and $\mathrm{Y}(-8,5)$
\square We are going to translate the triangle six units to the right. What do you think would be a good strategy for this?
\square Your new coordinates should be:
T'(1, 5); R'(1, 7); Y'(-2, 5)

Original Triangle:

A (1, 1), B (1, 5), C (3, 1)
\square Draw a triangle with coordinates
A (1,1), B (1,5), C $(3,1)$
\square Translate the triangle three units left and seven units down. Don't forget to label the vertices of your image!
\square New coordinates should be: $\mathbf{A}^{\prime}(-2,-6)$; $\mathbf{B}^{\prime}(-2,-2)$; C($0,-6$)

Translation Strategy

\square Just move every vertex of the figure the correct number of spaces!

On your graphing sheet...

\square Draw a trapezoid with vertices $\mathrm{L}(2,-7)$; I(3, -5); S(6, -5); C(7, -7)
\square Translate the trapezoid four units left and one unit up. Label your new coordinates.
\square Your new coordinates should be:
$L^{\prime}(-2,-6) ; l^{\prime}(-1,-4) ; S^{\prime}(2,-4) ; C^{\prime}(3,-6)$

Coordinate Notation

\square Translations are sometimes described using coordinate notation. (The textbook calls it "translation notation")
\square EXAMPLE: $(x+4, y-2)$ means to add four to all the $x-$ coordinates and subtract two to all the y-coordinates.
\square Talk to your trio: what do you think would happen???
\square Graph a point $\mathbf{A}(5,3)$.
\square Add four to the x-coordinate and subtract two from the y coordinate. What are your new coordinates?
\square Graph this new point. Where did it end up? Which direction did it move?

Coordiante Notation

\square ($x+$ number $)$: moves right
\square (x - number): moves left
\square (y + number): moves up
\square (y - number): moves down
\square Coordinate (Translation) Notation Examples:
$\square(x-3, y+8)$ would move a figure 3 units left and 8 units up.
$\square(x+7, y)$ would move a figure 7 units right, but not up or down.

What was the translation?

\square What was the translation? Write it in coordinate notation.
$\square(x+6, y-3)$

What was the translation?

\square What was the translation? Write it in coordinate notation.
$\square(x, y+4)$

Homework

\square p. $457(1-7,9)$ (This is from volume 2!!!)

