Created by Mr. Lischwe
Warmup $1 /\left(\mathbf{8}^{5} \cdot \mathbf{8}^{-4}\right)+\left(\frac{3^{10}}{3^{8}}\right)$
****Don’t forget to do the reflection!!!****

$1-$	$2 \div$	$3-$	3
			$5+$
$5+$	$1-$	$12 \times$	

******Please get:

- Graphing Sheet
- Marker \& Eraser
- 1 sheet of tracing paper (on the supply table)

1. $(x, y) \rightarrow(-x,-y)$

$A(4,3) \rightarrow A^{\prime}(-4,-3) \quad=A^{\prime}(-4,-3)$
$B(3,1) \rightarrow B^{\prime}(-3,-1) \quad=B^{\prime}(-3,-1)$
$C(-2,1) \rightarrow C(-(-2),-1)=C^{\prime}(2,-1)$ $D(2,4) \rightarrow D^{\prime}(-2,-4) \quad=D^{\prime}(-2,-4)$
rotation of 180° around the origin
2. $(x, y) \rightarrow(x+5, y)$

$P(-4,2) \rightarrow P^{\prime}(-4+5,2) \quad=P^{\prime}(1,2)$
$Q(-1,3) \rightarrow Q^{\prime}(-1+5,3)=Q^{\prime}(4,3)$
$R(-3,-3) \rightarrow R^{\prime}(-3+5,-3)=R^{\prime}(2,-3)$
translation 5 units right
3. $(x, y) \rightarrow\left(x, \frac{1}{3} y\right)$

$D(1,3) \quad \rightarrow D^{\prime}\left(1, \frac{1}{3} \cdot 3\right) \quad=D^{\prime}(1,1)$ $E(3,-3) \rightarrow E^{\prime}\left(3, \frac{1}{3} \cdot-3\right)=E^{\prime}(3,-1)$
$F(-3,-3) \rightarrow F^{\prime}\left(-3, \frac{1}{3} \cdot-3\right)=F^{\prime}(-3,-1)$
vertical compression by a factor of $\frac{1}{3}$
4. $(x, y) \rightarrow(y, x)$

$$
K(-2,1) \rightarrow K^{\prime}(1,-2)
$$

$$
L(4,-3) \quad \rightarrow \quad L^{\prime}(-3,4)
$$

$$
M(-2,-4) \rightarrow M^{\prime}(-4,-2)
$$

reflection across the line $y=x$
5. Preimage Image

$A(-4,4)$	\rightarrow	$A^{\prime}(4,4)$
$B(-1,2)$	\rightarrow	$B^{\prime}(2,1)$
$C(-4,1)$	\rightarrow	$C(1,4)$

$(x, y) \rightarrow(y,-x)$; rotation of 90° clockwise around the origin

$$
\begin{array}{ll}
A B=A^{\prime} B^{\prime}=\sqrt{13} & \mathrm{~m} \angle A=\mathrm{m} \angle A^{\prime}=56^{\circ} \\
B C=B^{\prime} C^{\prime}=\sqrt{10} & \mathrm{~m} \angle B=\mathrm{m} \angle B^{\prime}=52^{\circ} \\
A C=A^{\prime} C^{\prime}=3 & \mathrm{~m} \angle C=\mathrm{m} \angle C^{\prime}=72^{\circ}
\end{array}
$$

The transformation preserves length and angle measure.

6. | Preimage | | Image |
| :--- | :--- | :--- |
| $J(0,3)$ | \rightarrow | $\Gamma^{\prime}(-3,0)$ |
| $K(4,3)$ | \rightarrow | $K^{\prime}(-3,-4)$ |
| $L(2,1)$ | \rightarrow | $L^{\prime}(-1,-2)$ |

$(x, y) \rightarrow(-y,-x)$ reflection across the line $y=-x$
$J K=J^{\prime} K^{\prime}=4$
$K L=K^{\prime} L^{\prime}=\sqrt{8}$
$\mathrm{m} \angle J=\mathrm{m} \angle J^{\prime}=45^{\circ}$
$J=J^{\prime} L^{\prime}=\sqrt{8}$
$\mathrm{m} \angle K=\mathrm{m} \angle K^{\prime}=45^{\circ}$
$\mathrm{m} \angle L=\mathrm{m} \angle L^{\prime}=90^{\circ}$
The transformation preserves length and angle measure.

10. Use the points $A(2,3)$ and $B(2,-3)$.
a. Describe segment $A B$ and find its length.

Segment $A B$ is a vertical segment that is 6 units long.
b. Describe the image of segment $A B$ under the transformation $(x, y) \rightarrow(x, 2 y)$.
$A(2,3) \rightarrow A^{\prime}(2,2 \cdot 3)=A^{\prime}(2,6)$
$B(2,-3) \rightarrow B^{\prime}(2,2 \cdot(-3))=B^{\prime}(2,-6)$
The image of segment $A B$ is a vertical segment that is 12 units long.
c. Describe the image of segment $A B$ under the transformation $(x, y) \rightarrow(x+2, y)$.
$A(2,3) \rightarrow A^{\prime}(2+2,3)=A^{\prime}(4,3)$
$B(2,-3) \rightarrow B^{\prime}(2+2,-3)=B^{\prime}(4,-3)$
The image of segment $A B$ is a vertical segment two units to the right of the original segment that is 6 units long.
d. Compare the two transformations.

Possible answer: $(x, y) \rightarrow(x+2, y)$ is rigid, because it does not change the length of the segment. $(x, y) \rightarrow(x, 2 y)$ is not rigid because it doubles the length of the segment. The segment remains vertical under both transformations.

Return of the Quizzes

Objective

Identify and draw translations.

WHAT IS A TRANSLATION?

What kind of Translation is this?

$(x, y) \rightarrow(x+5, y) \quad 5$ units right
$(x, y) \rightarrow(x-3, y) \quad 3$ units left
$(x, y) \rightarrow(x, y+2) \quad 2$ units up
$(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \mathrm{y}-4) \quad 4$ units down
$(x, y) \rightarrow(x-6, y+8)$
6 units left, 8 units up

Patty Paper Time!

- Draw a triangle that is smaller than a fourth of the size of the patty paper on your blank piece of paper. Label the vertices of the triangle.
- Copy the triangle onto the patty paper.
- Using your patty paper, translate your triangle to somewhere else on your paper. Label your new points with prime marks.

Patty Paper Time!

- Using your ruler, connect the preimage vertices to the image vertices.
- Measure each of these segments.
-What do you notice?
- Are these segments parallel, perpendicular, or neither?

These segments are... pg. 834

 Vectors!- A quantity that has both direction and magnitude.
- The initial point of a vector is the starting point.
- The terminal point is the ending point.

Translations

A translation is a transformation along a vector such that each segment joining a point and its image has the same length as the vector and is parallel to the vector.

Vector Video

- https://www.youtube.com/watch?v=A05n32BI0aY

A vector in the coordinate plane can be written as <a, $b>$, where a is the horizontal change and b is the vertical change from the initial point to the terminal point.

How does this connect to the Pythagorean Theorem?

Try It Out!

- Draw a Triangle with coordinates $\mathrm{T}(5,5) \mathrm{R}(5,7)$ and $Y(8,5)$
- Use the Vector $<-6,-6>$ to translate the triangle

Try It Out!

- Draw a Triangle with coordinates B $(1,1) \mathrm{O}(3,2)$ and $L(5,1)$
- Use the Vector $<3,-4>$ to translate the triangle

What would the vector be?

$$
\begin{array}{ll}
(x, y) \rightarrow(x+5, y) & <5,0> \\
(x, y) \rightarrow(x-3, y) & <-3,0> \\
(x, y) \rightarrow(x, y+2) & <0,2> \\
(x, y) \rightarrow(x, y-4) & <0,-4> \\
(x, y) \rightarrow(x-6, y+8) & <-6,8>
\end{array}
$$

HOMEWORK

$$
\text { pg. } 839 \text { (1-10) }
$$

