Warmup 2/(The age you turn on your quinceañera) Created by Ms. Marlin

2. Early finisher (I meant to do this yesterday)

Solve for i : $9 x-7 i>9 x-21 u$

Are the triangles congruent? Explain why or why not. Write the congruence statements for each pair of sides or angles in your explanation. Given: C is the midpoint of both $\overline{A E}$ and $\overline{B D}$.

- $\overline{\boldsymbol{A C}} \cong \overline{\boldsymbol{E C}}$ because \mathbf{C} is the midpoint of $\overline{\boldsymbol{A E}}$.
- $\overline{\boldsymbol{B C}} \cong \overline{\boldsymbol{D C}}$ because \mathbf{C} is the midpoint of $\overline{\boldsymbol{B D}}$.
- $\angle \boldsymbol{A C B} \cong \angle \boldsymbol{E C D}$ because vertical angles are congruent.
- So the triangles are congruent by SAS.

What if...

We only knew two sides of two triangles and a nonincluded angle? Would that be enough to determine congruence?

A Video...
https://www.khanacademy.org/math/geometry/congruence/triangle-congruence/v/more-on-why-ssa-is-not-a-postulate

SSA is not a shortcut!

Write down when it is not a shortcut

Example of HL Congruence

HL Congruence (Special Case of SSA)

If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of another right triangle, then the triangles are congruent.

$$
\triangle A B C \cong
$$

$$
\begin{aligned}
& \text { Objective: } \\
& \text { Explore Triangle } \\
& \text { Congruence }
\end{aligned}
$$

Triangle Angle Sum Theorem

All of the angles in a triangle sum to 180 degrees

Discuss with your trio

Do you think that AAA works as a shortcut? - In other words, if we know all of the angles of two triangles are congruent, do we know that the two triangles are congruent?

An included side is the common side of two consecutive angles in a polygon. The following postulate uses the idea of an included side.

$\overline{P Q}$ is the included side of $\angle P$ and $\angle Q$.

ASA Congruence

If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, then the triangles are congruent.

$\triangle A B C \cong \triangle D E F$

Example of ASA Congruence

Determine if you can use ASA to

 prove $\triangle N K L \cong \triangle L M N$. Explain.

By the Alternate Interior Angles Theorem. $\angle K L N \cong \angle M N L$ and $\angle K N L \cong \angle M L N . \overline{N L} \cong \overline{L N}$ by the Reflexive Property. So ASA can be applied.

AAS Congruence

If two angles and a nonincluded side of one triangle are congruent to the corresponding angles and nonincluded side of another triangle, then the triangles are congruent.

$$
\triangle G H J \cong \triangle K L M
$$

Determine if you can use AAS to prove that the triangles are congruent.

No. For the triangle on the left, the side is an included side.

Example of AAS Congruence

Given: $\overline{J L}$ bisects $\angle K L M$

Write Down all the Three Letter Variations of the Combinations of the letters A and S
For example: SSS

Circle which ones work as shortcuts and which ones do not work as shortcuts Group the ones that mean the same thing!
For example: AAS is the same as SAA

Homework
ASA pg. 1007-1008 (3-6)
AAS pg. 1060 (1-7)

