

What triangle congruence shortcuts work?

Rotational Symmetry

- A clockwise rotation of how many degrees would map vertex \mathbf{A} onto vertex \mathbf{E} ?

Each vertex:
60°
$60 \cdot 4=240^{\circ}$

State if the two triangles are congruent. If they

State what additional information you need to prove the triangles are congruent for the given shortcut

SAS

State what additional information you need to prove the triangles are congruent for the given shortcut

O
ASA

State what additional information you need to prove the triangles are congruent for the given shortcut

SSS

State what additional information you need to prove the triangles are congruent for the given shortcut

Given: $\angle 1 \cong \angle 2$
$\angle 3 \cong \angle 4$
Prove: $\triangle A B D \cong \triangle C D B$

Given: $\overline{D E} \cong \overline{D F}$
$\overline{E H} \cong \overline{H F}$
Prove: $\triangle D H E \cong \triangle D H F$

Given: $\overline{A N}$ bisects $\angle C N I$ $\angle C \cong \angle I$
Prove: $\triangle C A N \cong \triangle I A N$

Given: $\angle A \cong \angle C$
$\overline{A B} \cong \overline{B C}$
Prove: $\triangle C B E \cong \triangle A B D$

Given: J is the midpoint of $\overline{K M}$ and $\overline{N L}$.
Prove: $\angle L K J \cong \angle N M J$

Rectangle $A B C D$ is shown.

Find all remaining segment lengths

