Warmup 1/(The base used in scientific notation) Created by Mr. Lischwe

- 1) Which do you think would be a larger number: 22³ or 3²²?
- 2) Without multiplying it out, estimate the value of 22³.10,648
- 3) Without multiplying it out, estimate the value of 3²².
- 4) Guess: what do you think 2⁰ is?
- 5) Guess: what do you think 4⁻² is?

p. 19 ((1 - 5, 7, 9 - 12))

- 1. $(-5)^4$
- 2. $3^2 \cdot 5 \cdot q^3$
- 3. m^5
- 4. 6,561
- 5. $\frac{1}{81}$
- 7. 8,000,000,000 (8 billion)

- 9. -311
- 10.37
- 11.16
- 12.10

9) $g^5 - h^3$ (2)⁵ - (7)³ 32 - 343 -311

10) $c^{2} + d^{3}$ (8)² + (-3)³ 64 + (-27) 37

1)
$$a^{2} \cdot b^{6}$$

 $\left(\frac{1}{2}\right)^{2} \cdot (2)^{6}$
 $\frac{1}{4} \cdot 64$
16

12)
$$(r-s)^3 + r^2$$

 $(-3 - (-4))^3 + (-3)^2$
 $(1)^3 + 9$
10

Discuss with your group: The population of Bridgeville triples every decade. Its population in 2000 was 25,000. Which of these expressions would calculate the population in 2040? 4 Jecades A) 25,000 · 3 · 4

B) 25,000 · 3 · 40

C) 25,000 \cdot 4³ D) 25,000 \cdot 3⁴

E) 25,000 \cdot 3⁴⁰

25,000.3.3.3.3

Calculate the exact population of Bridgeville in 2040. $\chi_{029,000}$

Table of Contents (2nd Semester)

- p. 1 Exponent Basics (1.2)
- p. 2 Zero & Negative Exponents (1.5)

Zero & Negative Exponents

2

Discover how zero & negative exponents work

» Find a pattern and use it to complete the table:

Exponential Form	Standard Form
2 ⁴	16
2 ³	8 5.2 2.2
2 ²	4
2 ¹	2
2 ⁰	III 2.0

Finding a pattern

» Find a pattern and use it to complete the table:

Exponential Form	Standard Form
3 ⁴	81
3 ³	27
3 ²	9 >>3
3 ¹	3
3 ⁰	

Finding a pattern

» Any time you expand a power, there is really an "invisible 1" being multiplied by everything.

$3^4 = 1 • 3 \cdot 3 \cdot 3 \cdot 3$

- » You don't need to write the 1 when you expand, but if you understand that it is there, it will make some things we learn later make MUCH more sense.
- $\gg 2d^3 = 2 \cdot d \cdot d \cdot d$

The "invisible $1^{\prime\prime}$

For 5^o, there are no 5's, but the invisible 1 is still there!!!

The "invisible 1"

Zero Exponents:

» Anything to the zero power is 1!

Examples 1) $9^0 = 1$ 2) $a^0 = 1$

4) $(8x^2 \cdot 3y^{18})^0 = 1$

Zero Exponents

4⁻² IS DIFFERENT THAN (-4)²!!!

- » We know that $4^2 = 16$.
- » We know that (-4)² is also 16.

» But what if the EXPONENT is negative?
» 4⁻² = ???

» Find a pattern and use it to complete the table:

Exponential Form	Standard Form	
2 ⁴	16	,
2 ³	8	
2 ²	4	1
2 ¹	2	
2 ⁰	1 2	-2
2 ⁻¹	17 2	÷7
2 ⁻²	<u>-</u>	
2 ⁻³	- 18	
2 ⁻⁴	16	

» Find a pattern and use it to complete the table:

	Exponential Form	Standaı Form	rd	
	34	81		
	3 ³	27		
	3 ²	9	1-3	
	3 ¹	3	2-3	
	3 ⁰	1	1:2	
	3 -1	-laul-	etc.	
	3 ⁻²	4		
	3 -3	1 27		
	3-4	1		
Findir	ng a	[Da	atter	7

4 ⁻²	$\frac{1}{16}$
2 ⁻³	$\frac{1}{8}$
10 ⁻³	1 1000
2 ⁻⁴	$\frac{1}{16}$
7 ⁻¹	$\frac{1}{7}$

Examples – Try these in your head!!!

 x^{-3} $\frac{1}{x^3}$

What about with variables?

Negative Exponents: **Rule:** $x^{-n} = \frac{1}{x^n}$

» Negative exponent:

> 1 over the same power with a positive exponent

Negative Exponents >

One way to think about
positive/negative exponents...

$$3^4 = 1 \cdot 3 \cdot 3 \cdot 3 \cdot 3$$

 $3^4 = 1 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
 $3^3 = 1 \cdot 3 \cdot 3 \cdot 3$
 $3^2 = 1 \cdot 3 \cdot 3$
 $3^1 = 1 \cdot 3$
 $3^0 = 1$
 $3^{-1} = \frac{1}{3}$
 $3^{-2} = \frac{1}{3 \cdot 3}$
 $3^{-3} = \frac{1}{3 \cdot 3 \cdot 3}$
(How do you expand
exponent? This is how.

3

(How do you expand a negative exponent? This is how.)

» POSITIVE EXPONENTS:

> Are 1 TIMES the base that many times

 $> 2^4 = 1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

» NEGATIVE EXPONENTS:

> Are 1 DIVIDED BY the base that many times > $2^{-4} = 1 \div 2 \div 2 \div 2 \div 2$ $= \frac{1}{2 \cdot 2 \cdot 2 \cdot 2}$ $= \frac{1}{2^4}$

» ZERO EXPONENTS:

> Are the 1 not multiplied or divided by anything > $2^0 = 1$

»Positive exponents mean to multiply. »Negative exponents mean to divide!

Negative Exponents: Examples

Why doesn't this work?

DO NOT do this:

6×10⁻ $= 6 \times \frac{1}{10^4}$ 6 $=\frac{10^{4}}{10^{4}}$

Why does the "move the decimal" trick work here???

...which means you're starting with 6 and you're dividing by ten 4 times!

» Finish Corrections

- > Explain your mistake
- > Explain the correct process

» +30 Minutes of ALEKS

Homework