Warmup 1/(The base used in

 scientific notation) created by Mr. Lischwe1) Which do you think would be a larger number: 22^{3} or 3^{22} ?
2) Without multiplying it out, estimate the value of $22^{3} .10,648$
3) Without multiplying it out, estim
4) Guess: what do you think 2^{0} is?
5) Guess: what do you think 4^{-2} is?

1. $(-5)^{4} \quad$ 9. -311
 2. $3^{2} \cdot 5 \cdot q^{3}$
 10. 37
 11. 16
 4. 6,561
 12. 10
 5. $\frac{1}{81}$
 7. $8,000,000,000(8$ billion)

$$
\text { 9) } \begin{array}{lc}
g^{5}-h^{3} & \text { 11) } a^{2} \cdot b^{6} \\
(2)^{5}-(7)^{3} & \left(\frac{1}{2}\right)^{2} \cdot(2)^{6} \\
32-343 & \frac{1}{4} \cdot 64 \\
-311 & 16
\end{array}
$$

10) $c^{2}+d^{3}$
$(8)^{2}+(-3)^{3}$
$64+(-27)$ 37
11) $(r-s)^{3}+r^{2}$
$(-3-(-4))^{3}+(-3)^{2}$ $(1)^{3}+9$

Discuss with your group:

The population of Bridgeville rriples fivery decade. Its population in 2000 was 25,000 . Which of these expressions would calculate the population in 2040. 4 decades

A) $25,000 \cdot 3 \cdot 4$
B) $25,000 \cdot 3 \cdot 40$
C) $25,000 \cdot 4^{3}$
(D) $25,000 \cdot 3^{*}$
E) $25,000 \cdot 3^{40}$

$25,000 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

Calculate the exact population of Bridgeville in 2040. 2,025,000

Table of Contents ($2^{\text {nd }}$ Semester)

p. 1 Exponent Basics (1.2)
p. 2 Zero \& Negative Exponents (1.5)

Zero \& Negative Exponents

Objective:
Discover how zero \& negative exponents work
» Find a pattern and use it to complete the table:

Finding a pattern
» Find a pattern and use it to complete the table:

Exponential Form	Standard Form
3^{4}	$\mathbf{8 1}$
3^{3}	$\mathbf{2 7}$
3^{2}	$\mathbf{9}$
3^{1}	$\mathbf{3}$
3^{0}	1

Finding a pattern
» Any time you expand a power, there is really an "invisible 1" being multiplied by everything.
$3^{4}=2 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
" You don't need to write the 1 when you expand, but if you understand that it is there, it will make some things we learn later make MUCH more sense.
$>2 d^{3}=\cdot 2 \cdot d \cdot d \cdot d$

$$
\text { The coinvisible } \mathbb{1} \mathbb{D}^{10}
$$

$5^{0}=1$.
For 5^{0}, there are no 5^{\prime} s, but the invisible 1 is still there!!!

$$
\text { The coinvisible } \mathbb{1} \mathbb{D}^{10}
$$

Zero Exponents:

» Anything to the zero power is 1!

Examples

1) $9^{0}=1 \quad$ 2) $a^{0}=\square \quad \begin{array}{ll}\text { 3) } & 4 x^{0} \\ & =4 \cdot 1 \\ & =\Theta 4\end{array}$
2) $\left(8 x^{2} \cdot 3 y^{18}\right)^{0}=\square$

Zero Exponents

4^{-2} IS DIFFERENT THAN (-4)${ }^{2}!!!$

» We know that $4^{2}=16$.
» We know that $(-4)^{2}$ is also 16.
» But what if the EXPONENT is negative?
) $4^{-2}=$???
» Find a pattern and use it to complete the table:

» Find a pattern and use it to complete the table:

$$
\begin{array}{ll}
4^{-2} & \frac{1}{16} \\
2^{-3} & \frac{1}{8} \\
10^{-3} & \frac{1}{1000} \\
2^{-4} & \frac{1}{16} \\
7^{-1} & \frac{1}{7}
\end{array}
$$

Examples - Try these in your headduy

$$
\begin{aligned}
& x^{-3} \\
& \frac{1}{x^{3}}
\end{aligned}
$$

Whaat about with variobles? >

Negative Exponents:

Rule: $x^{-n}=\frac{1}{x^{n}}$
» Negative exponent:
>1 over the same power with a positive exponent

One way to think about positive/negative exponents...

$$
\begin{aligned}
3^{4} & =1 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \\
3^{3} & =1 \cdot 3 \cdot 3 \cdot 3 \\
-3^{2} & =1 \cdot 3 \cdot 3 \\
3^{1} & =1 \cdot 3 \\
3^{0} & =1
\end{aligned}
$$

$$
-3^{-1}=\frac{1}{3}
$$

$$
-3^{-2}=\frac{1}{3 \cdot 3}
$$

$$
-3^{-3}=\frac{1}{3 \cdot 3 \cdot 3}
$$

» POSITIVE EXPONENTS:

$>$ Are 1 TIMES the base that many times
$>2^{4}=1 \cdot 2 \cdot 2 \cdot 2 \cdot 2$

» NEGATIVE EXPONENTS:

$>$ Are 1 DIVIDED BY the base that many times
$>2^{-4}=1 \div 2 \div 2 \div 2 \div 2$
$=\frac{1}{2 \cdot 2 \cdot 2 \cdot 2}$
$=\frac{1}{2^{4}}$
» ZERO EXPONENTS:
$>$ Are the 1 not multiplied or divided by anything
$>2^{0}=1$
»Positive exponents mean to multiply.
»Negative exponents mean to divide!

Negative Exponents: Examples

1) 4^{-3}

2) $10^{-5} \frac{1}{15900}$
3) $13^{-1} \frac{1}{13}$
4) $(-2)^{-3} \frac{1}{-8}$
5) $x^{-6} \frac{1}{x^{6}}$
6) $\begin{aligned} & 2^{2}+2^{-2} \\ & 4+\frac{1}{4}=4 \frac{1}{4}\end{aligned}$

$$
\overbrace{0006}^{6^{-4}}
$$

Why doesn't this work?

6×10^{-4}

.0006

Why does the "move
the decimal" trick work here???

6×10^{-4}

$$
\begin{aligned}
& =6 \times \frac{1}{10^{4}} \\
& =\frac{6}{10^{4}}
\end{aligned}
$$

...which means you're starting with 6 and you're dividing by ten 4 times!
» Finish Corrections
> Explain your mistake
> Explain the correct process
» +30 Minutes of ALEKS

凡onnework

